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Abstractt - Synthetic aperture radar (SAR) data processing
has matured over the past decade with development in
processing approaches that Include tradltiontd time-domain
methudss  popular and efficient frequency-domain methods, and
relatively new and more precise chirp-scaling methods. These
approaches have been used in various processing applications
to achieve various degrees of efficiency and accuracy. One
common trait amongst all SAR data processing algorithms,
however, is their iterative and repetitive nature that make them
amenable to parallel computing implementation. With SAR’S
contribution to remote sensing now well-established, the
processhsg throughput demand has steadjly Increased with
each new mission, Parallel computing jmplementatlon of SAR
processing algorithms is therefore an important means of
attaining high SAR data proeesshrg throughput to keep up with
the ever-increasing science demand.

This paper concerns parallel computing implementation of a
mode of data called ScanSAR. ScanSAR has the unique
advantage of yleldlng wide swath coverage in a single data
collection pass. This mode of data collection has been
demonstrated on SIR-C and Is bebtg used operationally for the
first time on Radarsat. The burst nature of ScanSAR data 1s a
natural candjdate  for parallel computing Implementation. This
paper gives a description of such an implementation experience
at Alaska SAR Facility for Radarsat ScanSAR mode data, A
practical concurrent processhtg technique is also described that
allows further improvement in throughput at a slight increase
in system cost.

I. INTRODUCTION

Digital procewing  of synthetic aperture radm (SAR) data[l]
is known to be one of the most computationally  demanding
engineering applications. Although under continual
development for the past fifteen years, SAR data processing
systems to-date rarely approach real-time processing
throughput except for a few spcciat  dedicated custom-built
machines such as the Alaska SAR Processor (ASP) and in
low resolution applications. Largely due to limitations in
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computation and processing algorithm technologies, early
systems such as the Interim Digital SAR Processor (IDPS)
[SEASAT, SIR-B] [2-3] which were hosted on general
purpose computing platforms were only capable of
processing throughput rate on the order of l/lOOOth  real-
time. This level of performance severely limited their
ability to supply science with time-critical data,

With the expanding role of the Alaska SAR Facility (ASF)
in acquiring, processing and archiving data from a fleet of
international polar orbiting satellites [4], the SAR
Processing System (SPS) at ASF is being furnished with a
Radarsat ScanSAR data processing system [5] thal is
capable of processing a minimum of 42 minutes of
ScanSAR data in an 11-hour day which translates into a
processing throughput requirement of - l/16th  real-time.
This paper describes the implementation requirements for
the Radarsat ScanSAR data processing system aL ASF, the
hardware platform evaluation and selection process, the
ScanSAR algorithm and the implementation details
associated with parallelizing  the processing algorithm on the
seleeted platform.

11, ScanSAR PROCESSOR REQUIREMENTS
OVERVIEW

2.1 ScanSAR Mode Processing Requirements

The ASF SPS block diagram is given in Figure 1. To
promote ease of operations and maintenance, specific
project-wide guidelines regarding subsystem interfaces,
systems standards, coding standards, user interfaces, and
error reporting are applied to each subsystem within the
SPS. The emphasis is on applying to the greatest extent
possible Commercial Off-the-Shelf (COTS) hardware,
software, standards, and technology. UNIX operating
systems is a requirement on all hardware platfortns as is
compliance with POS IX (Portable Operating System
Interface), High-level programming languages such as
ANSI C and FORTRAN arc selected for ease of
implemcntalion, A client-server communication model is



also adopted with SAR processors acting as production
servers in response to a control processor client,

The ScanSAR Processor (SSP) System at ASF is required to
process daily 34 minutes of Radarsat  ScanSAR data,  In
addition, it is required to produce another 8 minutes of
ScanSAR data in a quick 2-hour turnaround mode, With the
current approach of sharing processing hardware with the
Precision Processor, the net throughput requirement for the
SSP becomes daily processing of 42 minutes of ScanSAR
data in an 11-hour period or roughly 1/16th real-time rate,
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III. ScanSAR DATA CHARACTERISTICS &
PROCESSING ALGORITHM

In the ScanSAR mode [6], wide swath coverage on the order
of 200 km to 500 km is achieved by sweeping the antenna
beam electronically in the cross-track dimension to generate
multiple overlapping sub-swaths, each extending
approximately 100 km in range. The resulting echo data for
each subswath appears in the form of discrete ‘bursts’ rather
than a continuous sequence. For Radarsat, swath width of
-500 km can be achieved using its 4-beam modes, while
-300 km swath can be obtained with the 3-beam and 2-beam
modes.

ScanSAR data, when viewed on a per beam basis, resembles
those collected from a burst mode SAR. The processing
algorithm selected for ScanSAR data (see Figure 2) [7-8]
therefore patterns closely after the one used for Magellan,  a
burst mode SAR that imaged Venus from 1990 to 1992.
Data processing is basically handled on a pcr burst basis
until the very last step when image data from each burst is
merged to form the final multi-look image frame. The
familiar frequency-domain fast correlation approach is used

to compress range lines in each burst. A data corner-turn is
then applied followed by azimuth processing which is
accomplished using the efficient deramp-FFT  method.
Geometric and radiometric  correction as well as pixel
averaging are then applied to the resulting image pixels from
each burst before they are merged together in a multi-look
overlay process,

hgure  2. ScanSAR Processing Algorihr
!

IV. ScanSAR PLATFORM EVALUATION

The hardware selection process for the ScanSAR Processor
took 6 months and 2 peer reviews to complete. This process
involved the following steps:

1
2

3

4
5

initial scoping of class of machine,
performing computer market survey and identifying
candidate platforms,

developing representative benchmark software and
selwtion criteria,
performing benchmarking and platform evaluation,
selecting the target platform.

4.1 Scoping of Target Platform

Based on the requirements set forth in Scxtion II and some
prototype code, rough counts of the number of operations
required to produce typical image products were compiled.
This included FFT’s in the range and azimuth compression
processes and rcsampling  in the projection and co-ordinate
transformation process to name a few. Based on the
throughput requirement, an estimate on the size of a targel
machine was determined to be on the order of 500 million
floating point operations per second (500 MFLOPS)
sustained.

4.2 Computer Market Survey

A computer market survey was then conducted to seek out
suitable candidate hardware platforms. The criteria for
inclusion in the evaluation process were mainly the
machine’s expected computational capability and its
availability to support our benchmarking effort. Estimated



system cost was not of initial concern noting that some of
the more expensive supercomputers  maybe available under
time-used lease arrangements. Machines identified in this
effort represented both Symmetric Multi-Processor (SMP)
and Massively Parallel Processor (MPP) class of system
architwture.  SMP candidates included the Power Challenge
series from Silicon Graphics, Inc. (SGI)  and the DEC-7000
series models from Digital Equipment Corp. (DEC). MPP
representatives were the CRAY T3D, the Intel Paragon, the
Thinking Machine Corp.% CM-5, and the IBM SP-2.

The hardware characteristics and confitmrations  of the
candidate platforms are listed in Table I. -

Tabtc I. Candidate Plarfomr  Characteristics

1 Memory size  used for benchmarking, size represents per processor
for MPP and machine total for SMP.

4.3 Benchmark Software

The benchmark software covered all major computation and
1/0 steps in the ScanSAR rtlgoriihm,  The benchmark code
was written in FORTRAN and C, and ran on a model 670
SUN workstation with a single processor, It ingested raw
data samples in 81/8Q format from disk, performed the
necessary data unpacking, performed the ScanSAR data
processing steps outlined in the previous section, repacked
the output pixels into byte format and output to disk. The
input and output files as WC1l as timing results obtained on
the SUN were used as a reference for comparison.

The benchmark software consisted of the following
categories of software modules:

1 Computation modules performing -
a WI% used in range compression and azimuth

compression,
b vectorized  computation with indexed memory

access for interpolation and resampling,
c vcctorizcd computation with direct memory

access for multi-look overlay.

2 Data movement modules performing -
a data packing& unpacking,
b corner turn,
c framelet  truncation.

3 Data 1/0 modules performing -
a disk read/write,
b message passing between processors in MPP

machines.

All software modules were written in ANSI FORTRAN or
C language, each in less than 100 lines of code. Some
pertinent parameters of the benchmark software are listed in
Table H.

Table IL Benehmark  Paramctrms

?s I 8192
h .>nmk

Numt!er ot Kange Samph

K

No. Final Image Samples Alcrng-lmdr
h’o.  hal Image Samples Cross-track I 5000

4.4 Benchmark & Platform Evaluation

The benchmark software was first porled 10 each candidate
platform and in all cases made initially to run on only a
singIe processing clement. The resulting timing and output
files were collected and checked against the reference
obtained on the SUN 670, The ported code on each
candidate machine is then parallelized  using standard vendor
supplied routines and procedures. Although consultation
from vendor on specific issues was allowed, the actual code
porting and optimization on each machine were performed
by a designated member of the hardware selection team so
that a subjective measure of code development effort and
code portability in general could be gauged.

A prioritized list of machine attributes was also developed to
assure thoroughness in the evaluation and to maximize the
objectivity in the platform selection process. A total of 10
specific attributes were used, listed below in descending
order of importance to the ScanSAR data processing
application:

1 throughput capability
2 software porting and development efforl
3 operating system and compiler maturity
4 expected system reliability and maintainability

purchase cost
; adaptability to other t ypes of processing algorithm
7 system expandability
8 compliance with Portable Operating System &

Interface guide (pOSIX)



9 availability and support of the Open Software
Foundation (OSF) Distributed Computing
Environment (DCE)

10 availability of appropriate digital signal processing
(DSP) library routines

4.5 Platform Selection & Description

Based on our evaluation of the candidate platforms against
the list of prioritized attributes, the target platform selected
is the IBM SP-2. The IBM SP-2, also known as the Scalable
POWERparrallel  System 9076, is a collection of RISC
System/6000 processors connected together via a proprietary
high performance switch (HPS) called the SP-2
communication subsystem. This scalable architecture, with
the support of the HPS, affords the user scalable
performance when dealing with compute- as well as I/O-
intensive jobs. The user can actually execute both serial and
parallel applications simultaneously while managing the
whole system from a single workstation. The 1 BM SP-2
software is based on an open architecture AIX/6000 UNIX
operating system that allows the user to easily integrate the
SP-2 machine into user’s existing environment. The IBM
software supports a comprehensive set of AIX Parallel
Systcm Support Programs (PSSP) in addition to C and
FORTRAN. To assist in parallel programming
development, the IBM Parallel Environment for AIX
program product provides development and execution
support for parallel applications written in FORTRAN, C
and C++ using the Message Passing Interface (MPI)
standard. In addition, parallel libraries such as IBM Parallel
Engineering and Scientific Subroutine Library (PESSL)  are
available to create or convert applications to take advartblgc
of the parallel processor architecture of the SP-2.

To satisfy the requirement of processing 42 minutes of
ScanSAR data in 11 hours, it is determined that 20
processing nodes are required. To enhance reliability and to
retain flexibility for expansion, the 20 nodes are grouped
into two 8-node and one 4-node machines. Each processing
node is chosen to be the ‘wide’ 66MHz variety equipped
with 256 MB of RAM, 4 GB of disks, an Ethernet
connection and a High Performance Switch (HPS) Adapter.
A FDDI controller connects one of the processing nodes of
cxach machine to the external Control Processor (CP) to
effect high speed data access. Opcralions on each machine
is orchestrated by a model 390 control workstation equipped
with 128 MB RAM, 2 GB of disks, 2 Ethernet controllers, a
CD-ROM drive, an 8-mm tape drive for back-up, and an 19-
inch color monitor. It is expected that each 8-node and 4-
node machine can handle processing of 17 and 8 minutes of
RADARSAT ScanSAR data respectively in an 1 l-hour day.

The hardware configuration of a single 8-node SP-2 unit is
illustrated in Figure 3.

IBM SP-2
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Fig. 3. Target Platform Configuration

V. IMPLEMENTATION

5.1 Sample Dataset Description

The samde dataset consists of atmroximate  1500 bursts (see
Figure ~) representing a typicai  4-beam 500 X 500 km2

image frame, Each burst consists of approximate 65 range
lines, each contains approximate 8500 samples. Each
sample is represented in 2 bytes (8118Q) resulting in a data
file size of 1.5 Giga bytes (GB). The data is generated
synthetically such that point targets will result when the data
is processed.

During the benchmarking process, the concept of ‘fine grain’
versus ‘coarse grain’ parallelization  was explored. The
difference between the two is mainly illustrated by the fact
that ‘fine grain’ parallelization  typically applies parallel
processing to the lowest level of data clement. In the case of
ScanSAR data, ‘fine grain’ parallelization  will effect the
distribution of individual range lines (md azimuth lines in
azimuth processing) to all available processing elements for
processing, This approach, although effective in distributing
computation workload, can often times cause throughput
penalties in the form of excessive data movements amongst
processing elements. With the burst nature of the ScanSAR
data, it is demonstrated that the use of ‘coarse grain’
parallelization, where blocks of integral bursts arc
distributed to the available processing elements for
processing, is the more efficient approach. ‘Fine grain’
parallelization  is usually the approach taken by vendor
supplied parallelization  routines in the absence of user
intervention.

Using the ‘coarse grain’ approach, the sample dataset is
divided into a number of roughly equal segments (see Figure
4) equal ing to number of processing elements. F~ch equal
segment is assigned to a processing element for processing.
By keeping each data burst within a processing element
throughout most of the processing steps, the need for data
movement and communications between processing
elements is greatly reduced.



Figure 4. Segmentaticm of Data Ikamc

5.2 ScanSAR Algorithm Implementation

The ScanSAR  data processing algorithm [41 is exccutcd  in
four stages:

1 a raw data transfer stage where conditioned (deeodcd
and reformatted) echo data file together with all
necessary ancillary data files are transferred from the
CP disk to the SP-2,

2 a pre-processing  stage that effectively processes a
small subset of the data to derive refined pointing
information,

3 a main-processing stage that executes the CPU-
intensive steps of the processing algorithm such as
range and azimuth compression, geometric
rectification, and radiometric compensation,

4 a post-processing stage where parlially overlaid
image pixels from each data segment are merged to
form multi-look pixels before being projected onto a
spwific geometric co-ordinate...

The following sections describe the implementation details
on the SP-2 for each processing stage, using the sample
dataset shown in Figure 4 for illustration.

Raw Data Transfer

A typical 500 km X 500 km image frame consists of -1500
data bursts and occupies a 2 GB data file that resides on
disks attached to the CP, Two options were considered in
bringing the data file into the SP-2 via the FDDI network.
The first option involves buffering the input data from CP
first onto external disks mounted on one of the processing
nodes (e.g. node 8 in Figure 3). Processing at each node
will then begin by accessing data from the external disks.

The second option effects the transfer from CP through one
of the nodes to the local disks on each processing node via
the HPS, Processing at each node will then begin by
accessing data from its own local disks. Timing results for
these two options based on the sample dataset  are -10
minutes and -13 minutes respectively.

Pre-Processing

Pre-processing  refers to the process of refining processing
paramc~ers  initially derived from ephemeris, It involves
most of the processing stages in main processing except that
only a small  subset of the data is processed. The discussion
on pre-processing  implementation is therefore defered to the
main processing section.

Main Processing

Main processing refers to the processing steps of range
compression, corner-turn, azimuth processing, geometric
rectificAon,  radiometric  compensation, pixel averaging, and
partial overlay. Using the ‘coarse grain’ parallelization
approach, contiguous data bursts from a data segment are
processed by one processing node (see Figure 4). In
particular, range lines from each burst arc first range
compressed using the fast Fourier correlation method [9]
whereby range lines are FFT’ed, multiplied with a range
reference, and inverse FFT’ed. The resulting range
compressed data is corner-turned using the on-board RAM
memory of the processing node. Azimuth processing is then
applied using the deramp-FFT method [9] whereby each
azimuth line is multiplied with a frequency ramp followed
by a forward FFT. Framelet  truncation, geometric
rectification, and radiometric  compensation are then applied.
The pixel data is then detected and merged with the
corresponding pixels obtained from the previous bursts. A
pixel averaging process is applied to achieve constant
resolution and number of looks. At the end of main
processing, each processing node will hold an overlaid
image segment in its local disks. Timing results on a 8-node
machine based on the sample dataset are 31 minutes when
data is accessed from the external disks versus -21 minutes
when accessed from the local disks.

Post Processing

The post processing stage merges the overlaid image
segments from each node into a single large image before
performing the final projection ortlo a specific co-ordinate
grid. This process is done at onc of the processing nodes.
The resulting image data occupies a file of 25 MB at one
byte per pixel, Timing results indicates -5 minuks to
accomplish this stage of processing.

5.3 Processing Throughput

The handling of a particular job request by the ScanSAR
Processor involves the sequential execution of the four



processing stages described in the previous section. As
evident in Table III, the best overall processing time for the
sample dataset is -39 minutes, Assuming that the
preprocessing time is equivalent to 30% of lhe main
processing time, the total processing time for each 500 X
500 km2 frame using an 8-node SP-2 is therefore projected
to be -46 minutes, or -1/37th real-time. The effective
throughput rate for the overall system (consisting of two 8-
nodc and one 4-node machine) is then better than 1/15* real-
time which surpasses the throughput rcquircmcnt  of l/16th.

‘l’able IfL Timing Restdts on an 8-node SP-2
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5.4 Parallelization  Options for Multiple Processing Jobs

Option for gaining throughput improvement exists when
multiple jobs are to be processed. It is noted that during pre-
and main processing, there is little or no 1/0 traffic on the
FDDI and HPS. Similarly, the transfer stage requires little
or no CPU involvement from the processing nodes. The
post processing stage however does require both 1/0 and
CPU. Based on the timing results obtained for each
processing stage (see Table  III), two concurrent processing
schemes were studied, each handling multiple jobs
simultaneously. Figure 5 depicts the two concurrent
schemes. Their timing results relative to the sample datasct
are displayed in Table 111. It is evident from the timing
results that having data transfer performed in parallel with
both main processing and post processing provides the best
throughput results. Based on these results, processing
throughput approaching 31 minutes per frame can bc
achieved when jobs of up to the size of the sample dataset
are fed successive] y through an 8-node SP-2. Assuming
again in the worst case that preprocessing time is equivalent
to 30% of the main processing time, the throughput of the 8-
node SP-2 is therefore projected to be -39 minutes per
frame or roughly 1/3 Ith real-time. This translates into an
effective throughput rate for the ScanSAR processor system
(consisting of two 8-node and one 4-node machines) of
1/1 3* real-time, surpassing the required throughput of l/161h
real-time by about 20%. However, there is a cost associated
with the concurrent implementation. Job handling at the
Control Processor will have to be modified to
simultaneously handle and track multiple jobs, a definite
complication relative to handling one job at a time.
Similarly on the SP-2 side, job control and sequencing
become more complicated. Also additional memory and disk

capacity are required to accommodate data from mutliplc
image frames.

JOQ 11112
Job 2 T2
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Figure 5ss. Main-processing concurrent with Transfer and Post-processing
( 3 concurrent jobs)

Job 1 Tll T2 1~
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Figure 5b.Transfer  Concurrent with Main-Processing and Posl-Processing
(2 concurrent jobs)

V. CONCLUSION& STATUS

A parallel ScanSAR data processing itnplementation has
been presented involving a particular MPP platform, the
IBM SP-2. Realistic timing results collected demonstrate
the selected algorithm and architecture can satisfy the
required RadarSAT ScanSAR  data processing throughput
demand at ASF. Additional means of improving the overall
system throughput at a slight increase in system cost has
also been identified. The current SSP is in its final stage of
development and is on schedule to be operational at ASF by
May 19%.
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